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1. INTRODUCTION

For many applications in approximation theory it is desirable to approxi
mate a function f in a function space E by two other functions, one con
stituting an upper and the other a lower bound for f, where both bounds are
supposed to be in a finite dimensional linear subspace V of E. Almost
necessarily, such a theory has to be formulated in the framework of ordered
normed vector lattices. To work with such structures is barely a restriction
since most of the spaces used in approximation theory are normed vector
lattices anyway. Let us only mention, as examples, the space C(X) of con
tinuous real functions on a compact Hausdorff space X, or the real Lp-spaces
with 1 <p < 00. So we are led to the problem of approximating an element
f by order intervals which contain f and which are of minimal length.

In this note, we derive a very general necessary and sufficient condition
on the subspace V of a normed vector lattice E, in order that best interval
approximations exist for every element of E. As in the case of best approxi
mating functions it can be shown that the set of best interval approximations
is convex, from which the uniqueness of best interval approximations
follows for strictly convex normed vector lattices. For E = C(X) we obtain
a necessary condition for an order interval to be a best interval approxima
tion. Conversely, if X = [0, l} and V is a Haar subspace of C(X) we derive
also an easy applicable sufficient condition for an order interval to be a best
interval approximation. It is a well known fact that best one-sided polynomial
approximations in qo, 1] are just translates of best Tchebycheff approxima
tions, and in this case it turns out that the order interval between the upper
and lower one-sided approximations is a best interval approximation.
Using the above results it is shown that y is a best (polynomial) interval
approximation for a function f in C[O, 1] if and only if both inf(y) and
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sup(y) constitute best (lower and upper, respectively) one-sided polynomial
approximations for f

The author acknowledges Corollary 8 and the necessity-part of the proof
of Proposition 7 which both have been proposed by the referee.

2. BEST INTERVAL ApPROXIMATIONS IN NORMED VECTOR LATTICES

Let E be a normed real vector lattice (throughout we use the terminology
of [7]). Without loss of generality we may assume that the positive cone K
in E is closed since the ordering of E introduced by the closure of K again
generates a normed vector lattice. If V is a finite dimensional subspace
of E, let Tv be the set of all order intervals [f, g] in E with f, g E V, and
for y E Tv let I-'(y) = II sup(y) - inf(y)ll. If y = [f, g} one obviously has
I-'(y) = II/ - g II. If/is in E we now define Mv(f) = {y E Tv :/E y} and call
y E Mv(f) a best interval approximation for/if I-'(y) = inf{I-'(Y'): y' E Mv(f)}.

THEOREM 1. The sets M v(f) (fEE) are all nonempty if and only if E has
an order unit in V.

Proof Let all Mv(f) be nonempty. If {gl ,... , gn} is a basis for V, take
g = sup{! gl 1,00" Ign I}. Since Mv(g) is nonempty, there are real numbers ~i

such that g ~ .1::~1 ~igi . Take bE [0, 1] such that b is not in the spectrum
of the matrix [aij] given by aii = ~i' 1 ~ i, j ~ n. We claim that the set
{hI'"'' hn} C K given by hi = .1::~1 ~igi - bgi forms a basis for V: If fJi are real
numbers such that .1:;=1 fJihi = °then one has .1::1 [.1::=1 (~i - Mii)fJd gi = 0,
hence, .1::=1 (aii - M ii) fJi = 0, j = 1,... , n. But the definition of b then
implies that all fJi vanish which shows that the hi are linearly independent.
Suppose now that / is any function in E. From the initial assumption it
follows that there are real numbers fJi such that / ~ L:~1 fJihi' Thus,
/ ~ (max1 ";;i,,;;n I fJi I) L:~l hi which proves that L:1 hi is an order unit of E
(in V).

Conversely, if E has an order unit in V, say e, then for each / E E there are
positive numbers a and b such that/ ~ be and -/ ~ ae. Hence,fE [-ae, be]
so that M v(f) is nonempty.

Next, let Pv(f) C M v(f) denote the set of all best interval approximations
forf

COROLLARY 2. The sets Pv(f)(fE E) are all nonempty if and only if E
has an order unit in V.

Proof The necessity follows immediately from the theorem. Thus, let
/ be in E, and let Mv(f) be nonempty. Define d = inf{p.(y'): y' E Mv(f)}.
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If {Yk} C M y(f) is a sequence such that d = limk fJ-(Yk) it follows that
II sup(±Yk)11 ~ II SUP(±Yk) =F /11 + II/II ~ p..(y,,) + II/II. Then, since {fJ-(Yk)}
is bounded and V is finite dimensional, there is ayE r y and a subsequence
{y,,'} of {y,,} such that lim" sup(±y,,') = sup(±y). Since K is closed and
{SUP(±Yk') +f} C K one has YE My(f). Finally, p..(y) = lim"p..(Yk') = d
shows that yEPy(f).

LEMMA 3. The sets Py(f)(/E E) are convex.

Proof Let Yl' Y2 E Py(f) and t1 , t2 E [0, I] with t1 + t2 = 1. As a
consequence of the fact that E, as a vector lattice, possesses the decomposi
tion property we obtain

L tiYi = L ti inf(Yi) + L [0, ti SUP(Yi) - ti inf(Yi)]
iii

= ~ t i inf(Yi) + [0,4: (SUP(Yi) - inf(Yi))]
• •

= [L ti inf(Yi)' ~ ti SUP(Yi)]'
• •

Moreover, from SUP(±Yi) =F /E K, i = 1,2, we have

L ti SUP(±Yi) =F / E K,
i

and, hence, Li tiYi E My(f). It remains to verify that with d = p..(yJ one has

fJ- (~tiYi) = 114: ti(SUP(Yi) - inf(Yi)) II
• •

~ L tip..(Yi) = d,
i

so that finally Li tiYi E Py(f).
An immediate consequence of the lemma is the following uniqueness

theorem.

THEOREM 4. If E is strictly convex and has an order unit in V, then each
0/ the sets Py(f)(fE E) contains exactly one element.

Proof Since for / E V the statement is trivial, let / ¢: V. By Corollary 2,
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Py(f) is nonempty. Assume now that there are two distinct order intervals
YI and Y2 in Py(f). Due to the lemma one has

o < JL(YI) = JL(Y2) = JL(!YI + !Y2)

= !JL(YI) JL[JL(YI)-I YI + JL(Y2)-1 Y2]

= JL(YIH II JL(YI)-I [SUP(YI) - inf(YI)] + JL(Y2)-1 [SUP(Y2) - inf(Y2)]11

< JL(YI),

and this contradiction shows that P y(f) is a singleton.
We note that the above result holds whenever E = Lp(S, E, v) (1 < p < 00)

where (S, E, v) is a finite positive measure space and E is ordered by the
positive cone K of all v-essentially nonnegative functions in LiS, E, v).
Concerning the space LI[O, 1] of alI Lebesgue integrable functions on [0, 1]
it is clear that for IE LI[O, 1], YEMy(f) is in Pv(f) if and only if both
inf(y) and -sup(y) are best one-sided approximations for I and -f, respec
tively. Therefore, if V is a Haar subspace (cf. Section 3) in LI[O, 1], it folIows
as a direct application of the results of DeVore and Bojanic [1,3] that the
best interval approximations in Mv(f) for IE LI[O, 1] are unique whenever I
is in CI[O, 1] and V is spanned by a Haar system in CI[O, 1]. Moreover, if
1 ~ p < 00 and if E p is the (dense) normed vector lattice of all v-essentialIy
bounded functions in LiS, E, v), it is clear that Ep contains order units,
e.g. the characteristic function of S. As a consequence of CorolIary 2 we
then obtain for E = Ep : If V contains an order unit of Ep , then for every
f E E p there exists a best interval approximation for I in M v(f).

3. BEST INTERVAL APPROXIMATIONS IN C(X)

Here, we treat the special case where E is the Banach space C(X) of all
continuous real functions on a compact Hausdorff space X, where C(X)
has the uniform norm topology and the order structure induced by IRx.
IfIE C(X) and Y EM v(f), we define the sets

Zo(Y) = {t E X; [sup(y) - inf(y)](t) = JL(Y)},

ZI(Y) = {t E X: [sup(y) - f](t) = O},

and

Z2(Y) = {t E X: [f - inf(y)](t) = O}.

The next theorem yields necessary conditions for Y E M v(f) to be a best
interval approximation for f
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THEOREM 5. Let V contain an order unit of C(X) and let f be in C(X)\V
and yin Mv(f). Then Y is not in Pv(f) whenever

(i) ZI(Y) U Z2(Y) is empty or

(ii) there are functions UI , U2 E V satisfying

UI(t) - u2(t) ~ 0,

ul(t) > 0,

u2(t) < 0,

t E Zo(Y),

t E ZI(Y),

t E Z2(Y)'

Proof Since case (i) is obvious, as well as the case where ZI(Y) or Z2(Y)
are empty, we assume that both ZI(Y) and Z2(Y) are nonempty and that the
inequalities of (ii) are true. Without loss of generality we may assume that
II ulll = II u211 = II e II = 1, where e is an order unit of C(X) in V. Let

d = t inf{1 ui(t)l: t E Zi(Y), i = 1, 2}.

Since each Ui is continuous and the Zi(Y) are compact one has d > O. Next,
if Zo(Y) = X, define Uo = X, otherwise there exists an open neighborhood
Uo of Zo(Y) in X such that

UI(t) - u2(t) ~ d inf{e(t): t E X}/2, tE Uo '

Since ff/: V we obviously have ZI(Y), Z2(Y) of=. X. Consequently, there are
open neighborhoods Ui of Zh) in X such that

(-1 )i-I ui(t) > d, i = 1,2.

Let now a, b, and 0 be the positive constants given by

a = inf{[sup(-(-1)iy) + (-I)if](t): t E X""" Ui , i = 1, 2},

b = IJL(Y) - sup{[sup(y) - inf(y)](t): t E X""" Uo}, Uo of=. X,
la, Uo= X,

o= min{a, b/2}/(2 + d),

and define gl and g2 in V by

gl = sup(y) + OUI - ode,

g2 = inf(y) + liu2 •

From

gl - f = sup(y) - f + li(ul - de),

f - g2 = f - inf(y) - OU2 ,
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we then get
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and

(gi - f)(t) ?: Sd(l - e(t)) ?: 0,

(gi - f)(t) ?: a - 0(1 + d) ?: 0,

(f - g2)(t) ?: Sd ?: 0,

t E UI ,

tEX""UI ,

t E U2 ,

(f - g2)(t) ?: a - 0 ?: 0, t E X"" U2 .

Therefore,fE [g2' gil and so [g2' gil E Mv(f). We finally get

°::;;; (gi - g2)(t) = [sup(y) - inf(y)](t) + S(u l - U2 - de)(t)

::;;; j-t(y) - od inf{e(t): t E X}/2, t E Uo

and similarly

°::;;; (gi - g2)(t) ::;;; j-t(y) - b + 0(2 + d) ::;;; j-t(y) - b/2, tEX - Uo'

Hence, j-t([g2 ,gIn < j-t(y) and this completes the proof.
The following definitions we need to derive (for the special case X = [0, In

a sufficient condition for y E M v(f) to be in Pv(f), a condition that may
easily be used to check whether an order interval containing f is a best
interval approximation for f

V is said to be a Haar subspace of C(X) if for every set of n distinct points
tl , .•. , tn of X and every real n-tuple (YI ,... , Yn) the interpolation problem
Y; = get;), i = 1,... , n has a unique solution g in V. Fu~thermore, let B be
the Boolean algebra of all ordered triples whose elements are the numbers °
or 1 (B with the usual lattice structure), and let g(J be the set of all subsets
of B. IffE qo, 1] and if y is a fixed order interval in M v(f), we define the
function W,,: [0, 1] -- g(J by

W,,(t) = {(xo , Xl' X2) EB\{(l, 1, 1)}: X; = 1 whenever 0::;;; i ::;;; 2 and t EZ;(y)}.

Next, let H(y) be the set of all functions F: [0, 1] -- B such that F(t) =

(Fo(!), FI(t), F2(t)) E W,,(t), t E [0, 1]. If Var(g) denotes the total variation of
a real function g on [0, I], we finally define

Var(F) = m?-x Var(F;),o :~::;;)::E;;2
FEH(y).

THEOREM 6. Let V be a Haar subspace of dimension n in qo, 1]. If
IE qQ, lJ\V, then y EMv(f) is in Pv(f) whenever inf{Var(F): FE H(y)} ?: n.

Proof Let y be in Mv(f) and let inf{Var(F): IE H(y)} ?: n. Assume that
y is not in Pv(f). Then there is a y' E Mv(f) such that j-t(y') < j-t(y). We
define g and h in V by

g = sup(y) - sup(y')
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h = inf(y) - inf(y').

From this follows that for t EZo(Y), Zl(y) or Z2(y) one has

or

(1)

(2)

(3)

get) - h(t) > 0,

get) ~ 0,

h(t) ~ 0,

respectively. Let now the function G: [0, 1]- B, depending on y, g, and h,
be given by G(t) = (Go(t), GI(t), G2(t», t E [0, 1], where G;(t) = 1 if the
above statement (j + 1) is true and G;(t) = °otherwise. Obviously, G E H(y)
so that, by hypothesis, YareG) ~ n. This implies that either g - h or g or h
must have at least n zeros in [0, 1] (counting double zeros in (0, 1) as two
zeros), hence that either (i) g = h or (ii) g = °or (iii) h = 0.

If (i) holds we have sup(y) - sup(y') = inf(y) - inf(y') and from this
follows that p,(y') = p,(y) which is a contradiction.

If (ii) is true we have sup(y') = sup(y). Assume now that Zo{Y) (\ Z2{y)
is nonempty. Then there is atE Zo(Y) (\ Z2{y) and for this t we have
[sup{y) - inf(y)](t) = p,(y) and h(t) ~ 0. Hence, p,(y') ~ [sup(y') - inf(y')](t) =
[sup(y) - inf(y) - inf(y') + inf{y)]{t) = p,(y) + h(t) ~ p,(y) which is again
a contradiction to our initial assumption. One, therefore, has to investigate
the remaining case, Zo(Y) (\ Z2(y) = empty. This last statement shows that
the set H'(y) of all function F: [0, 1]- {(I, 1,0), CO, 1, I)} such that

F(t) = (1, 1, 0),

and

F{t) = (0, 1, 1),

is contained in H(y). Since then

inf{Var(F): FE H'(y)} ~ inf{Var(F): FE H(y)} ~ n

it follows that g - h has at least n zeros in [0, 1] {again counting double
zeros in (0, 1) as two zeros), hence, that g = h. The desired contradiction
is reached as in (i).

The case (iii) may be treated in a completely analogous way as case (ii).
We, therefore, have to conclude that y E Pv(f).

EXAMPLE. Let VC qo, 1] be spanned by the basis {Xl' x2}, where
XI(t) = 1 - t and x2(t) = t2, t E [0, 1]. It is easy to verify that det[xi(t;)] oF °
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if °,,;:; t1 < t2 ,,;:; 1, hence, that V is a Haar subspace of qo, 1]. Let
fE qo, 1]\V be the constant function f(t) = 1, t E [0,1], take g(t) =
x 1(t) + x 2(t) = 1 - t + t2, t E [0, 1], and let h = (4/3)g. Since

inf{h(t): t E [0, In = h(!) = sup{g(t): t E [0, In = 1

we have [g, h] E Mv(f).
By combinatorial considerations we can see that

W(O) = W(l) = {(l, 0, I)},

W(!) = {(l, 1,0), (0, 1,0), (0, I, I)},

and

W(t) = B\{(1, 1, I)} otherwise.

Therefore, inf{Var(F): FE H([g, h])} = 2. Hence, [g, h] is a best interval
approximation for fin Mv(f).

4. BEST INTERVAL AND ONE-SIDED POLYNOMIAL ApPROXIMATIONS

If fE qo, 1] we call g E Va best one-sided approximation for f if g ,,;:;f
and Ilf - gil = infOlf - g' II: g' Ef - K}. If Vis the subspace of all algebraic
polynomials of degree n - I in qo, 1] it is known [2] that g E V is a best one
sided approximation for fin qo, 1] if and only if g + inf{llf - g' II: g' E V}e
is a best Tchebycheff approximation for f, where e is the characteristic
function of [0, I]. We can show that in this special case of polynomial
approximations, the best interval approximations may be determined from
a kn@wn Tchebycheff approximation by mere translation.

PROPOSITION 7. Let V be the subspace of all algebraic polynomials of
degree n - 1 in qo, 1] andf a function in qo, 1]. Then yEPv(f) ifand only
if y = [g, g + Ilf - gil e], where g E V is a best one-sided approximation
for!

Proof (Sufficiency). Let g be a best one-sided approximation for
fE qo, I]\V. Then, obviously, y = [g, g + Ilf - gil e] E Mv(f) with
(-L(y) = IIf - g II· By the remark preceding the proposition, (-L(Y) =
2 inf{IIf - g' II: g' E V} and g + t(-L(y)e is a best Tchebycheff approximation
for! Thus, g + t(-L(y)e - falternates n times on [0, 1] from which we infer
the existence of an integer k and of points °,,;:; t1 < ... < t n +1 ,,;:; 1 such
that

1 ~ i ~ n + 1,
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where j(i) = t(3 - (-l)i+k). Obviously, z(y) = [0, 1] so that each FE H(y)
satisfies

F(t) -1(1, 1,0),
i - (1,0, 1),

i + keven,
i + k odd.

Accordingly, Var(f) ;;::; n for all FE H(y). Together with Theorem 6 this
shows that y E Pv(f).

(Necessity). Let y be in Pv(f), where fE C[O, 1]. Again by the above
remark there is a best one-sided approximation g E V for f (which is unique
since the best Tchebycheff approximations are unique). From the sufficiency
part of the proof we know that [g, g + Ilf - gil e] E Pv(f). Hence,
IIf - gil = f-t(y) and so

o~f - inf(y) ~ f-t(y)e = lif - gil e.

Thus,

Ilf - inf(y)ll ~ Ilf - gil,

which implies that inf(y) is a best one-sided approximation for f in V. Since
such an approximation is unique we have inf(y) = g. In a similar way,
sup(y) = g + lif - gil e which finally proves the proposition.

From the remark preceding Proposition 7 and the uniqueness of best
Tchebycheff approximations we immediately have the following corollary.

COROLLARY 8. Under the hypothesis of Proposition 7 the set Pv(f) con
tains exactly one element.
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